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Abstract. The Spin dependent gluon and sea quark distributions of the proton and the neutron are ex-
tracted in the leading order (LO) and the next-to-leading order (NLO) QCD. The relativistic quark ex-
change model is used to calculate the related valence quark spin dependent structure function. The inverse
Mellin transform technique is performed to evaluate the polarized x-dependent distributions of the gluon
and the sea quark from the various moments of the valence quarks. It is shown that the calculated spin
structure functions (SSF) of the proton and the neutron are in good agreement with the available data,
such as E143, SMC, E142, E154 and Hermes experiments. A comparison is also made with the other the-
oretical models. Finally it is shown that the above calculated parton distributions improve the SSF of the
proton and the neutron.

PACS. 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes – 12.39.Ki Relativistic quark
model – 13.60.Hb Total and inclusive cross sections (including deep-inelastic processes) – 21.45.+V Few-
body systems

1 Introduction

Deep inelastic scattering of polarized leptons from polar-
ized nucleons provides the most important information on
the nucleons spin dependent structure functions (SSF). In
the past few years there have been many measurements
on the nucleon SSF [1–3]. Recently this has been also ex-
tracted by deep inelastic scattering of polarized leptons
off polarized nuclear targets, e.g. deuteron (SMC [1]) and
3He (E142, E154 and Hermes experiments [3]). Therefore
information about SSF of the neutron can in principle de-
pend upon nuclear structure effects as well.

On the other hand, not only the uncertainties in the
experimental data and their corresponding statistical er-
rors have been substantially reduced but also the values of
data are available at small x as well as different scales [4].
This suggests that one can analyze polarized deep inelastic
lepton scattering within the framework of radiative parton
model which in turns bring in the calculation of various
moments of SSF as well as its first moment.

On the theoretical side, how the spin of the hadron
is shared among its parton constituents and the evalua-
tion of the nucleon structure functions is still an outstand-
ing problem in high energy hadronic physics [5]. A most
natural possibility is to build the nucleons entirely from
the valence quarks [6] at some resolution scale, µ0 (static
point). But it is known that at high energies this picture
is no longer valid [7]. Since the gluons are then gener-

ated through bremsstrahlung off the constituent quarks.
Part of the so produced gluons materialize into the quark-
antiquarks pairs (the sea quarks [8]). Because of these de-
grees of freedom, as we pointed out before, recently atten-
tion has been paid to the other moments of the polarized
parton distribution [9]. So it is appropriate to perform a
detail study of the polarized parton distribution by using
the leading-order and the next-to-leading order evalua-
tion procedure of the renormalization-group equations to
generate the gluon and the sea contents at a new scale
Q2 > µ2

0 [9].
For the valence quark, most of the authors have used

(i) the fitting procedure by imposing various sum rules
construction [10] or (ii) the unrealistic approach such as
the instantons [11], Isgur-Karl [11], etc models or (iii) for
the unpolarized case, by using two-field operators correla-
tion functions to define the quark and gluon distributions
[12]. But in this article, we intend to use a realistic for-
malism which was originally introduced by Hoodbhoy and
Jaffe (HJ) [13,14] to investigate the multi-quark exchange
in the nuclear system. This model was successfully ap-
plied by us to light nuclei [15] and nuclear matter [16] to
calculate the quark distribution and the nucleus structure
function (the EMC-effect) respectively. In our recent work
we developed HJ method to calculate the SSF of three nu-
cleon systems (3H and 3He) as well as the proton and the
neutron by using the above formalism and the familiar
convolution approach [17]. In this framework we intend
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to investigate the effect of higher order corrections to the
valence quark structure of different nuclear target.

So the paper is organized as following. We begin Sect. 2
by introducing the polarized parton distributions and the
inverse Mellin transformation. In Sect. 3 we apply the
quark-exchange formalism to calculate the spin depen-
dent valence quark momentum distribution in the three
nucleon systems. Finally numerical results and conclusion
are presented in Sect. 4.

2 Polarized parton distributions

We start by the radiative generation technique proposed
[18] for explaining the magnitude and the sign of the total
gluon and the sea quark polarization. It is well known
that the Q2 dependence implied by QCD could be simply
expressed in terms of the parton density moments. One
therefore can write in the N-moment space [19],

∆MP(n,Q2) =
∫ 1

0

xn−1∆P(x,Q2) dx (1)

where P = qv, q̄, G and ∆MP(n,Q2) is the Mellin trans-
form of the polarized parton distribution, ∆P(x,Q2). We
take an SU(3)-flavor symmetric polarized sea in which
∆q̄ = ∆ū = ∆d̄ = ∆s̄ = ∆s.

As it was stated before, it is assumed that at a static
point the gluon and the anti-quark distributions should
satisfy the following boundary conditions at some low
scale µ2

0, respectively,

∆G(x, µ2
0) = 0 ∆q̄(x, µ2

0) = 0 (2)

Then the leading-order (LO) generation of the total sea
and the gluon can be given by the bremsstrahlung radia-
tion from the valence quarks of different flavors. They are
obtained as a solution of the polarized evolution equation
in the N-moment space [20,21],∑
q=u,d

∆Mv
q (n,Q2) = {

∑
q=u,d

∆Mv
q (n, µ2

0)}L−anNS

∆Mq̄(n,Q2) =
1
6
{
∑
q=u,d

∆Mv
q (n, µ2

0)}

× (αnL−a
n
− + (1− αn)L−a

n
+ − L−anNS )

∆MG(n,Q2) = {
∑
q=u,d

∆Mv
q (n, µ2

0)}

× αn(1− αn)
βn

(L−a
n
− − L−an+) (3)

where ani = −2∆P
n
i

β0
and β0, αn and βn are written as

following,

β0 = (11− 2
3
Nf )

αn =
∆Pnqq −∆Pn+
∆Pn− −∆Pn+

(4)

βn =
∆Pnqg

∆Pn− −∆Pn+

Nf is the number of active quark flavors (in our case Nf =
3) and

∆Pn± =
1
2

[∆Pnqq +∆Pngg

±
√

(∆Pngg −∆Pnqq)2 + 4∆Pnqg∆Pngq]

∆PnNS = ∆Pnqq =
4
3

[
3
2

+
1

n(n+ 1)
− 2S1(n)]

∆Pnqg = Nf
(n− 1)
n(n+ 1)

∆Pngq =
4
3

(n+ 2)
n(n+ 1)

∆Pngg = 3[
11
6
− Nf

9
+

4
n(n+ 1)

− 2S1(n)] (5)

with

S1(n) = ψ(n+ 1) + γE ,

ψ(n) =
d

dn
lnΓ (n), (6)

γE = 0.5772 (7)

where γE is the Euler’s constant [9].
By using the different polarized valence quark distri-

bution ∆qv(x,Q2), to be discussed later on according to
the quark exchange formalism, ∆Mv

q (n,Q2) will be cal-
culated through (1) where the quantity L, the coupling
ratio, is defined as (Λ2 is QCD cut off parameter),

L =
αs(µ2

0)
αs(Q2)

=
ln(Q

2

Λ2 )

ln( µ
2
0
Λ2 )

(8)

On the other hand, the second moment of the nucleon (i.e.
the proton and the neutron in average) structure function
is related to L [22] according to following equation:

MN (n,Q2) =
∫ 1

0

FN2 (x,Q2) dx

=
2
9

[
9
25

+
16
25
L−

50
81 ] +

1
18
L−

32
81 (9)

where FN2 (x,Q2) is the unpolarized nucleon structure
function. It should be emphasized that the results of the
evaluation should not depend on Λ and µ0, but only on
their combination through (7) i.e. L [8]. Experimentally
[23] MN (n,Q2) = 0.127 at Q2 = 15 GeV 2. So one can
calculate L at Q2 = 4 GeV 2 according to (7) and (8)
which leads to L = 10.3 ( µ0 = 0.266 GeV with Λ = 0.232
GeV). All of the above solutions in the N-moment space
(1)–(8) can be inverted into the x-space by the inverse
Mellin (M−1) transformation of (1) [24] i.e.

∆P(x,Q2) =M−1[∆MP(n,Q2)]

=
1

2πi

∫ c+i∞

c−i∞
x−n∆MP(n,Q2) dn (10)

The value of real number c is chosen such that the contour
passes through the right hand side of any singularities of
∆MP(n,Q2).
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In order to calculate the inverse Mellin transforms nu-
merically (9), we should rewrite this equation as,

∆P(x,Q2) =
1
π

∫ ∞
0

Im[exp(iφ)x−c−z exp(iφ)

×∆MP(c+ z exp(iφ), Q2)] dz (11)

In general the result of above integral should not depend
on c and φ, but a good selection of the c and φ parameters
cause an efficient numerical calculation [24]. Then, by us-
ing the above numerical inverse Mellin transformation we
could calculate ∆G(x,Q2) and ∆q̄(x,Q2) for the proton
and the neutron, according to (3).

3 Quark exchange formalism

Now, let us discuss the evaluation of valence quark distri-
bution as we pointed out before. We assume the nucleons
are composed of three valence quarks in the following way:

|α〉 = Nα† |0〉 =
1√
3!
Nα
µ1µ2µ3

q†µ1
q†µ2

q†µ3
|0〉 (12)

where α designate the nucleon states {P ,MS ,MT } and µ
stands for the quark states {k,ms,mt, c}. With the con-
vention that there is a summation on the repeated indices
as well as integration over k. q† (Nα†) are the creation op-
erators for quarks (nucleons) and Nα

µ1µ2µ3
are the totally

antisymmetric nucleon wave function, i.e.

Nα
µ1µ2µ3

= D(µ1, µ2, µ3;αi)

× δ(k1 + k2 + k3 − P )φ(k1,k2,k3,P ) (13)

D(µ1, µ2, µ3;αi) depend on the Clebsch-Gordon coeffi-
cients Cj1j2jm1m2m and the color factor εc1c2c3 ,

D(µ1, µ2, µ3;αi) =
1√
3!
εc1c2c3

· 1√
2

∑
s,t=0,1

C
1
2 s

1
2

msσmsMSαi

C
1
2

1
2 s

msµmsνms

×C
1
2 t

1
2

mtσmtMTαi

C
1
2

1
2 t

mtµmtνmt (14)

φ(k1,k2,k3,P ) is the nucleon wave function and we write
it in a Gaussian form (b ' nucleons radius) :

φ(k1,k2,k3,P ) =
(

3b4

π2

)3
4

exp[−b2 (k2
1 + k2

2 + k2
3)

2
+
b2P 2

6
]

(15)
We can define the nucleus state based on nucleon cre-

ation operators, i.e.

|Ai = 3〉 = (3!)−
1
2χα1α2α3Nα1

†Nα2
†Nα3

† |0〉 (16)

where χα1α2α3 is a complete antisymmetric nuclear wave
function ( it is taken from Faddeev calculation with Reid
soft core potential [25]) and it should be interpreted as

the wave function governing the center of mass motion of
the three quark clusters.

The quark momentum distributions for quarks with
fixed flavor and spin polarization in a three nucleon system
are defined as,

ρµ̄(k;Ai) =
〈Ai = 3|q†µ̄qµ̄|Ai = 3〉
〈Ai = 3|Ai = 3〉 (17)

where the sign bar means no summation on ms,mt and
integration over k in the µ indices. By using the above
definition we can calculate the quark polarized momentum
distribution for each flavor as below,

∆ρq(k;Ai) =
∑

q=u,d,j=1−4

Mqj exp(−ajk2) (18)

where

∆ρq(k;Ai) = ρq↑(k;Ai)− ρq↓(k;Ai) (19)

The matrix representation of polarized quark momentum
distribution for three nucleon systems is (F = b3

1+0.552I ): ∆ρu(k; 3H)
∆ρd(k; 3H)
∆ρu(k; 3He)
∆ρd(k; 3He)



= F

 0.367 −0.313I 1.612I −0.026I
−0.201 0.162I 0.601I 0.026I
−0.201 0.162I 0.601I 0.026I
0.367 −0.313I 1.612I −0.026I



×


exp(−3

2b
2k2)

exp(− 3
2b

2k2)
exp(− 12

7 b
2k2)

exp(−3b2k2)

 (20)

where [13,15]

I = 8π2

∫ ∞
0

x2 dx

∫ ∞
0

y2 dy

×
∫ 1

−1

d(cosθ) exp[−3x2

4b2
]|χ(x, y, cosθ)|2

In above equation χ(x, y, cosθ) is the Fourier transform of
the nucleus wave function and the parameter b is fixed
such that we could get the correct normalization and the
charge radius of 3He and 3H i. e. 1.68 fm and 1.56 fm
corresponding to b ' .837 fm and b ' .780 fm respectively
(we have only considered the leading order expansion in
χ(x,y) [7,13,17]).

4 Results and discussions

The polarized valence parton distribution at Q2, can be
related to the polarized momentum distribution for each
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flavor in the nucleus, by considering the relativistic cor-
rections according to the following equation [17,26],

∆qv(x,Q2;Ai)=
1

(1− x)2

∫
∆ρq(k;Ai)δ(

x

(1− x)
−k+

M
) dk

(21)
By performing the angular integration, we find,

∆qv(x,Q2;Ai) =
2πM

(1− x)2

∫ ∞
kmin

∆ρq(k;Ai)k dk (22)

with

kmin(x) =
( xM1−x + ε0)2 −m2

2( xM1−x + ε0)
(23)

m (M) is the quark (nucleon) mass , k+ is the light-cone
momentum of initial quark and ε0 is the quark binding
energy. Their numerical values at Q2 = 4 GeV 2 are m =
180 MeV and ε0=215 MeV [17].

A simple approach for describing the scattering pro-
cesses involving the nucleus is convolution model. It as-
sumes that the scattering may be described in terms of
incoherent scattering off nuclear constituents [27]. So we
can define the valence quark distribution of the bound
nucleon in terms of valence quark distribution of the free
nucleon as below,

∆qv(x,Q2;Ai)=a
∑
N

∫
∆qv(

x

yAi
, Q2;N)fN/Ai(yAi) dyAi

(24)
fN/Ai(yAi) is the nucleon momentum distribution in the
nucleus, where it is approximated it by a Fermi gas dis-
tribution and a is the nuclear asymmetry [27] (in case
of j = 1

2 , a=1). If the nucleon momentum distribution is
sharp we can expand (23) around x

〈yAi 〉
with 〈yAi〉 = 1+ ε̄

M

and ε̄ as the average removal energy of the nucleon, then

∆qv(
x

〈yAi〉
, Q2;N) = ∆qv(x,Q2;Ai) (25)

Although with a very good approximation one can con-
sider 3H and 3He as the proton and the neutron targets
[3] respectively.

The general form for the parameterization of the po-
larized parton distributions (including the valence quark)
[20,10,28] is:

x ∆P(x,Q2) = APηPx
aP (1−x)bP (1+γPx+%Px

1
2 ) (26)

where the normalization factor AP is defined as (Beta(x,y)
are the familiar Beta functions which are defined in terms
of Gamma functions),

A−1
P =

(
1 + γP

aP
aP + bP + 1

Beta(aP + bP − 1, bP + 1)
)

+ %PBeta

(
aP + bP −

1
2
, bP + 1

)
(27)

In the above equation the first moment is given by ηP . The
result of above parameterization for the valence quarks

Table 1. The parameters of parton distributions for the proton
according to the equation (22)

∆uv ∆dv ∆G ∆q̄.

ηP .7978 -.4822 1.314 -.0028
aP 1.146 1.027 0.315 .44
bP 3.423 2.958 8. 12.32
γP -4.4943 -2.459 0 -1.7
%P 2.598 1.995 -3.56 -7.

Table 2. The parameters of parton distributions for the neu-
tron according to the equation (22)

∆uv ∆dv ∆G ∆q̄.

ηP -.4786 .7958 1.305 -.00324
aP 1.0881 1.1391 0.3127 0.454
bP 3.643 3.891 8. 12.91
γP -1.86 -5.11 0 -1.71
%P 1.338 2.944 -3.743 -7.11

(21), the gluon and the sea quarks (equation 10) in the
proton and the neutron are given in Tables 1 and 2, re-
spectively. Unlike of the others calculations our parame-
ters for the quarks are fixed from the beginning and have
been calculated in a consistent ways.

In Figs. 1 and 2 we present x∆G(x,Q2 = 4GeV 2)
and x∆q̄(x,Q2 = 4GeV 2), for the proton and the neu-
tron respectively. The results of others calculations are
given for comparison. The GS(LO, Mellin) is the result
of our calculation for the proton but by using the valence
quark distribution of reference [10]. As we pointed out be-
fore, GS [10] and GRSV [30] have used various sum rules

Fig. 1. x∆G(x) at Q2 = 4GeV 2 for the proton (dot-
ted curve,LO), (full curve, NLO) and the neutron (dashed
curve,LO). The full curves are the result of references [10]
(GS(LO, GLAP) and GS(NLO,GLAP)) and [29] (GRSV).
GS(LO, Mellin) is the result of our calculation with the va-
lence quark distribution of reference [10]
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Fig. 2. As figure 1 but for x∆q̄(x). The full box shows the
experimental data of SMC group [1]

or some kind ansatz for the valence quark distribution.
However our result is in good agreement with those of GS
rather than GRSV who get the gluons pick at larger x val-
ues. The quantity ∆Mp

G(1, 4GeV 2) = 1.314, is comparable
with those of Glück et al [9] ∆MG(1, 4GeV 2) = 1.509 and
1.361 [30] and Ball et al [31] 1.50 ± 0.8 and 1.30 ± 0.56
[32].

Up to now we have not performed the next-to-leading
order corrections to the above calculated parton distribu-
tion functions. We know that the NLO contributions are
negligible when the QCD coupling constant is small. But
on the other hand for the large QCD coupling constant,
where the NLO corrections are sizable, the definition of
polaraized structure functions in terms of parton distri-
bution functions become scheme-dependence beyond LO.
However in order to get some estimate of NLO corrections,
we give the results of the NLO effect on our above LO cal-
culations. In this respect, we follow the formalism which
have been given by Ball et al. [31,32]. In this framework
the LO predictions are modified as,

∆fNLO(x,Q2) = [1 + εf (
ρ

γf
)3(αs(Q2

0)− αs(Q2))]

×∆fLO(x,Q2)

where

∆f(x,Q2) = v±(x,Q2) or ∆qNS(x,Q2)

εNS =
8

3πβ0

ε± =
112

3πβ0
[(1− nf

14
)± 13

14
(1− 11nf

104
)/

√
(1− 3nf

32
)]

ρ =
ξ

ζ
, ξ = ln(

x0

x
), ζ = ln

αs(Q2
0)

αs(Q2)

γ2
NS =

8
33− 2nf

, γ2
± = γ2

NS(5± 4

√
(1− 3nf

32
)

Fig. 3. Comparison of gp1(x) with experimental data: SMC
[1] (full box) and E143 [2] (full triangle). Dashed curve (the
valence quark only), full curve (with sea quarks)

and x0 is a reference value of x such that the approxima-
tion of the anomalous dimensions is valid for x ≤ x0 and
Q2 ≥ Q2

0 ( in our case x0 = 0.1). In above equations,

v± = ∆Σ + C±∆G,C± = 2(1±
√

(1− 3nf
32

))

and ∆Σ and ∆qNS have their usual definition [30–32].
The NLO corrections to our LO parton distributions are
also displayed in Figs. 1 and 2. It is seen that there is not
much difference between our NLO and LO results which
is in agreement with those of GRSV [30]. But the GS
calculations shows larger effect due to the next-to-leading
order contributions.

According to the leading order QCD parton model the
polarized structure function of the nucleons at given Q2

with the leading order contributions can be expressed in
terms of the various polarized parton distributions i.e. [29]

g1(x;Q2) =
1
2

∑
q=u,d,s

e2
q{∆qv(x,Q2) +∆q̄(x,Q2)} (28)

The results of our calculation according to the above equa-
tion i.e. gp1(x) and gn1 (x) are given in Figs. 3 and 4, re-
spectively. Dashed curve represents only the contribution
of valence quarks to the SSF [17]. It is seen that the sea
quarks improve our previous calculation and our results
get closer to the experimental data. The calculations of
GS [10] and GRSV [30] are also given for comparison.

In Table 3, the first moments i.e. Γ p1 and Γn1 are com-
pared with corresponding experimental data. Again, it is
seen that the sea-quarks improve our previous result and
we are very close to the experimental predications.

Figures 5 and 6 show the comparison of xgp1 and xgn1
against experimental data as well. The improvement re-
spect to the experimental data is evident for both the
proton and the neutron structure functions and it is indi-
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Table 3. The Comparison Γ i1 =
∫ 1

0
gi1(x) dx with the experimental data

Q2(GeV 2) Γ p1 Γn1

Present Calculation 4 0.1347 -0.04839
Valence Quark only 4 0.1420 -0.05091

SMC 10 0.136± 0.011± 0.11
E143 3 0.127± 0.004± 0.010
E142 2 −0.022± 0.011
E154 5 −.037± 0.004± 0.010

HERMES 2.5 −.037± 0.013± 0.011

Fig. 4. As Fig. 3 but for neutron i.e. comparison of gn1 (x)
with experimental data: Hermes [3] (full box) and E154 [3]
(full triangle)

Fig. 5. As Fig. 3 but for xgp1(x)

cating that the inclusion of the sea-quarks are very impor-
tant and the LO corrections are needed to get quatitative
results.

In Fig. 7 we present the result of our calculation for
deuteron, xgd1(x) at Q2 = 4 GeV 2. This has been calcu-

Fig. 6. As Fig. 4 but for xgn1 (x)

Fig. 7. As Fig. 5 but for deuteron

lated from the following equation,

xgd1(x,Q2) =
1
2
x[gp1(x,Q2) + gn1 (x,Q2)]R

d
N (x)

where R
d
N (x)=0.892 and it is valid for 0.001 ≤ x ≤ 0.7
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according to the reference [21]. Full curve is the calcu-
lation with the sea quarks and dashed curve shows only
the valence quark contributions. The corresponding ex-
perimental data is also displayed [1,2].

To end this paper let us summarize and conclude as
following. We have performed a detailed study of spin-
dependent structure function in the framework of relativis-
tic quark exchange model and a consistent leading-order
QCD calculations. We have adopted this point view that
there is no significant polarization of the gluons and the
sea quarks at low Q2. We have ignored the next-leading-
order correction in our structure functions which should
be negligible at least at x ≥ 5× 10−3 [30].

Our numerical analysis has revealed that by including
the sea-quarks distributions in a relativistic quark model,
as the one we have used here, it is possible to predict the
available experimental data.

Future measurements at higher energies are needed to
determine the behavior of the structure function at low x
and the exact rules of the gluons and the sea-quarks in
the hadrons.

We would like to thank professor W. Vogelsang for his com-
ments and information concerning the Mellin transform. MM
acknowledge Tehran University support under contract num-
ber 515/1/415.
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